A Pathway for Synapsis Initiation during Zygotene in Drosophila Oocytes
نویسندگان
چکیده
Formation of the synaptonemal complex (SC), or synapsis, between homologs in meiosis is essential for crossing over and chromosome segregation [1-4]. How SC assembly initiates is poorly understood but may have a critical role in ensuring synapsis between homologs and regulating double-strand break (DSB) and crossover formation. We investigated the genetic requirements for synapsis in Drosophila and found that there are three temporally and genetically distinct stages of synapsis initiation. In "early zygotene" oocytes, synapsis is only observed at the centromeres. We also found that nonhomologous centromeres are clustered during this process. In "mid-zygotene" oocytes, SC initiates at several euchromatic sites. The centromeric and first euchromatic SC initiation sites depend on the cohesion protein ORD. In "late zygotene" oocytes, SC initiates at many more sites that depend on the Kleisin-like protein C(2)M. Surprisingly, late zygotene synapsis initiation events are independent of the earlier mid-zygotene events, whereas both mid and late synapsis initiation events depend on the cohesin subunits SMC1 and SMC3. We propose that the enrichment of cohesion proteins at specific sites promotes homolog interactions and the initiation of euchromatic SC assembly independent of DSBs. Furthermore, the early euchromatic SC initiation events at mid-zygotene may be required for DSBs to be repaired as crossovers.
منابع مشابه
All Paired Up with No Place to Go: Pairing, Synapsis, and DSB Formation in a Balancer Heterozygote
The multiply inverted X chromosome balancer FM7 strongly suppresses, or eliminates, the occurrence of crossing over when heterozygous with a normal sequence homolog. We have utilized the LacI-GFP: lacO system to visualize the effects of FM7 on meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. Surprisingly, the analysis of meiotic pairing and synapsis for three ...
متن کاملSynaptonemal Complex-Dependent Centromeric Clustering and the Initiation of Synapsis in Drosophila Oocytes
The pairing of homologous chromosomes and the intimate synapsis of the paired homologs by the synaptonemal complex (SC) are essential for subsequent meiotic processes including recombination and chromosome segregation. Here we show that the centromere clustering plays an important role in initiating homolog synapsis during meiosis in Drosophila females. Although centromeres are not clustered pr...
متن کاملTemporal progression of recombination in human males.
To date, immunocytology has been used in humans to detect a limited number of meiotic proteins: components of the synaptonemal complex (SCP1 and SCP3) and some proteins known to participate in recombination events, such as MLH1 or RAD51. However, the colocalization or coexistence of proteins known to participate during the different stages of human meiosis remains largely unstudied, and these s...
متن کاملMeiotic synapsis in the absence of recombination.
Although in Saccharomyces cerevisiae the initiation of meiotic recombination, as indicated by double-strand break formation, appears to be functionally linked to the initiation of synapsis, meiotic chromosome synapsis in Drosophila females occurs in the absence of meiotic exchange. Electron microscopy of oocytes from females homozygous for either of two meiotic mutants (mei-W68 and mei-P22), wh...
متن کاملImmunocytogenetic detection of normal and abnormal oocytes in human fetal ovarian tissue in culture.
This study aimed to: (i) determine whether oocytes are present in cultures of human fetal ovary; (ii) identify whether meiotic anomalies are evident; and (iii) assess whether preparation or culture conditions influence oocyte survival and meiotic progression. Ovaries were collected from fetuses after termination at 13-16 weeks. Oocyte assessment utilized antibodies specific for synaptonemal com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011